A Multi-Class Pattern Recognition System for
نویسندگان
چکیده
This paper presents a portable system and method for recognizing the 26 hand shapes of the American Sign Language alphabet, using a novel glove-like device. Two additional signs, 'space', and 'enter' are added to the alphabet to allow the user to form words or phrases and send them to a speech synthesizer. Since the hand shape for a letter varies from one signer to another, this is a 28class pattern recognition system. A three-level hierarchical classifier divides the problem into "dispatchers" and "recognizers." After reducing pattern dimension from ten to three, the projection of class distributions onto horizontal planes makes it possible to apply simple linear discrimination in 2D, and Bayes' Rule in those cases where classes had features with overlapped distributions. Twenty-one out of 26 letters were recognized with 100% accuracy; the worst case, letter U, achieved 78%.
منابع مشابه
An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملA new discriminant subspace analysis approach for multi-class problems
Fukunaga–Koontz Transform (FKT) is a famous feature extraction method in statistical pattern recognition, which aims to find a set of vectors that have the best representative power for one class while the poorest representative power for the other class. Li and Savvides [1] propose a one-against-all strategy to deal with multi-class problems, in which the two-class FKT method can be directly a...
متن کاملA heuristic method for consumable resource allocation in multi-class dynamic PERT networks
This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a n...
متن کاملIdentification of Houseplants Using Neuro-vision Based Multi-stage Classification System
In this paper, we present a machine vision system that was developed on the basis of neural networks to identify twelve houseplants. Image processing system was used to extract 41 features of color, texture and shape from the images taken from front and back of the leaves. The features were fed into the neural network system as the recognition criteria and inputs. Multilayer perceptron (MLP) ne...
متن کامل